aws Ni

Serverless on AWS

Immersion Day

Vamsi Vikash Ankam i

2021

Building your second @
Lambda function

Or the mistakes we’ve all made ... and how to fix them

dWsSs

The “Lambda-lith” architecture

e Should I write a single function with internal
branching?

* Benefits: —> do “x”
* Fewer functions to manage

* Simpler migration path []‘:':’D e — > doY’

* Challenges: —> do 7"

e Large package size
* Hard to enforce least privilege
e Scaling team

* Maintenance

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. a v\ S

Solution: The “Lambda-lith” architecture

* For net new, recommend single-purpose functions (or
microservices)

e Benefits: — —> do “x”

* Easier to debug, trace errors
* Enforce least privilege, one role per function []‘-’-’D /1 —> doy”
 Simpler to test

— @ —_— dO //Z//
 Code reuse

e Less surface area

* Tips:
* Use naming conventions and tags to enhance
discoverability

 Don’t go nano
aWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
& V"

Integrating with my relational database

.. or other constrained downstream resources

* My experience / existing app is built with a relational
database, will this work with Lambda?

* Representative of two common issues:
* Drowning downstream resources
* Reusing expensive operations

 Lambda can scale up quickly, putting pressure on
downstream resources

* Expensive operations, such as creating a database
connection, take time

 Time is proportional to cost
* Impacts function cold start

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

‘\
i —®—
®

dWsSs

Solution: Pressure on downstream resources

e Consider resource type: (1) relational database or (2)
other -

* Relational database options: \

* For MySQL, PostgreSQL, consider Amazon RDS
Proxy for shared connection pool D%ﬂ —> ‘

QD —
* Aurora Serverless supports Data API /

e Other resource options: -

 Enable reserved concurrency

* Insert a queue between function and resource

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

dWsSs

Solution: Managing expensive operations

e |nitialize clients and database connections
outside the function handler

 Consider caching static assets in /tmp
* Avoid for user or other sensitive data

* Subsequent invocations can reuse these
resources

Function
Init

import boto3

client = None

def handler(event):
global client

if not client:
client = boto3.client(“dynamodb™)

business logic

Runtime
Shutdown

time

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

dWS
~—

To VPC or not VPC?

* Should my Lambda function be VPC-enabled?
e Other resources are in a VPC (e.g. EC2, RDS)

* Security wants to implement network security
tools

 Lambda functions always run in VPCs owned by the
Lambda service team

e When VPC enabled, configured with access to
your VPC via an ENI

e Lambda functions are invoked via an action with
access controlled by AWS IAM

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Customer VPC

— (|@m) <

AWS Lambda S

Elastic network
interface(s)

b /
@<

VPC to VPC
NAT

ervice VPC

dWsSs

Solution: To VPC or not VPC?

* Only if your function needs access to resources in the
VPC

* Includes access to on-prem via VPN or DX

e Tips for VPC functions:

* Requires access to multiple AZs, select at least two
subnets

* Never target public subnets

* Configure a NAT or NAT Gateway for internet access
 Use VPC Endpoints for access to AWS services
 ENIs can be exhausted, monitor usage

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS services requiring VPC
Amazon ECS
Amazon EFS
Amazon ElastiCache
Amazon Elasticsearch Service
Amazon MSK
Amazon MQ
Amazon RDS

Amazon Redshift
AWS PrivateLink

dWsSs

V"

Waiting to wait

e Should | perform synchronous work in my Lambda
function?
E Putobject\i i
* Lambda charged by duration, per millisecond : I :
L € : :
* Waittime = $S E E UpdateItem \E
* Functions calling other functions increases i< . .
concurrency : : |
aWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

V"

Solution: Waiting to wait

 Don’t wait (when possible)!

e Use fire and forget patterns to kick-off work, commit
data, etc.

* Perform work in parallel

* Orchestrate multi-step process with AWS Step
Functions

* Pay for orchestration, not wait time

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

PutObject
N

zA

A\ 4

UpdateItem

N
L

dWsSs

Observing my application

* How do | manage logging and tracing in a
serverless application?

* Serverless applications composed of
numerous disparate, ephemeral services

* Rely heavily on managed services

* Observability focuses on logs, metrics, and
traces

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

dWsSs

Solution: Observing my application

e Leverage AWS tools:
e AWS CloudWatch
 AWS X-Ray

* Tips:
e Set aretention period for CloudWatch Logs

e Use CloudWatch Embedded Metrics Format
(EMF)

 Add X-Ray permissions to execution role

 Lambda Extensions enables a broad array of partner
tooling

dWsSs

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What’s concurrency? Should we raise it?

My team plans for X requests per second, what
should | set concurrency to?

 As demand increases, Lambda services increases
concurrent executions

* One function instance handles one request

e Concurrency is a measure of concurrent
executions

* Cumulative concurrency and burst are limited by
AWS account per Region

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

—®® ®

SlJuoWUOJIAUT
uollndeX3 epquien

dWsSs

Requests

Aside: Exploration of Lambda Concurrency & Burst Limits

5000
4500 Function
* Average duration: 1 second
4000
* Requests / second: 4000
300 e Synchronous invocation
3000
Account
2500 . e .
* N. Virginia (us-east-1)
2000 * Concurrency limit: 1000 (default)
e Burst limit: 3000 (default)
1500
1000
. Successful invocation
500

. Cold start

. Throttled invocation

Start 1 min 2 min 3 min 4 min

dWsSs

\/7

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Requests

Aside: Exploration of Lambda Concurrency & Burst Limits

5000 Increase to
5000 RPS .
4500 Function
* Average duration: 1 second
4000
e Requests / second: 4000
300 e Synchronous invocation
3000
Account
2500 R
* N. Virginia (us-east-1)
2000 e Concurrency limit: 5000 (default)
e Burst limit: 3000 (default)
1500
1000
. Successful invocation
500

. Cold start

. Throttled invocation

Start 1 min 2 min 3 min 4 min

dWsSs

V

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Solution: What’s concurrency? Should we raise it?

* Understand Lambda scaling and concurrency

 Concurrency is a function of duration and request
rate

e Load test to estimate duration

& —®

* Leverage Provisioned Concurrency for anticipated Amazon SQS
bursts of activity Queue

 Reserved Concurrency can be used to throttle, if
needed

* Consider asynchronous processing to enable scaling

dWsSs

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

After the session: Keep Learning!

Architecting Serverless Solutions
https://www.aws.training/Details/eLearning?id=42594

AWS Lambda Foundations
https://www.aws.training/Details/eLearning?id=27197

Welcome to
Serverless @’ S
K¢
© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved. I—a nd . %:I %{)
This site brings tog blogs, videos, and rl';,',n QIO

https://www.aws.training/Details/eLearning?id=42594
https://www.aws.training/Details/eLearning?id=27197

