
© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Vamsi Vikash Ankam

2021

Serverless on AWS
Immersion Day

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Building your second
Lambda function
Or the mistakes we’ve all made … and how to fix them

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The “Lambda-lith” architecture

• Should I write a single function with internal
branching?

• Benefits:

• Fewer functions to manage

• Simpler migration path

• Challenges:

• Large package size

• Hard to enforce least privilege

• Scaling team

• Maintenance

do “x”

do “y”

do “z”

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Solution: The “Lambda-lith” architecture

• For net new, recommend single-purpose functions (or
microservices)

• Benefits:

• Easier to debug, trace errors

• Enforce least privilege, one role per function

• Simpler to test

• Code reuse

• Less surface area

• Tips:

• Use naming conventions and tags to enhance
discoverability

• Don’t go nano

do “x”

do “y”

do “z”

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Integrating with my relational database

• My experience / existing app is built with a relational
database, will this work with Lambda?

• Representative of two common issues:

• Drowning downstream resources

• Reusing expensive operations

• Lambda can scale up quickly, putting pressure on
downstream resources

• Expensive operations, such as creating a database
connection, take time

• Time is proportional to cost

• Impacts function cold start

… or other constrained downstream resources

…
…

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Solution: Pressure on downstream resources

• Consider resource type: (1) relational database or (2)
other

• Relational database options:

• For MySQL, PostgreSQL, consider Amazon RDS
Proxy for shared connection pool

• Aurora Serverless supports Data API

• Other resource options:

• Enable reserved concurrency

• Insert a queue between function and resource

…
…

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Solution: Managing expensive operations

• Initialize clients and database connections
outside the function handler

• Consider caching static assets in /tmp

• Avoid for user or other sensitive data

• Subsequent invocations can reuse these
resources

Invoke Invoke Invoke

time

Extension
Init

Runtime
Init

Function
Init

Extension
Shutdown

Runtime
Shutdown

import boto3

client = None

def handler(event):

global client

if not client:

client = boto3.client(“dynamodb”)

business logic

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

To VPC or not VPC?

• Should my Lambda function be VPC-enabled?

• Other resources are in a VPC (e.g. EC2, RDS)

• Security wants to implement network security
tools

• Lambda functions always run in VPCs owned by the
Lambda service team

• When VPC enabled, configured with access to
your VPC via an ENI

• Lambda functions are invoked via an action with
access controlled by AWS IAM

Customer VPC AWS Lambda Service VPC

VPC to VPC
NAT

Elastic network
interface(s)

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Solution: To VPC or not VPC?

• Only if your function needs access to resources in the
VPC

• Includes access to on-prem via VPN or DX

• Tips for VPC functions:

• Requires access to multiple AZs, select at least two
subnets

• Never target public subnets

• Configure a NAT or NAT Gateway for internet access

• Use VPC Endpoints for access to AWS services

• ENIs can be exhausted, monitor usage

AWS services requiring VPC

Amazon ECS

Amazon EFS

Amazon ElastiCache

Amazon Elasticsearch Service

Amazon MSK

Amazon MQ

Amazon RDS

Amazon Redshift

AWS PrivateLink

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Waiting to wait

• Should I perform synchronous work in my Lambda
function?

• Lambda charged by duration, per millisecond

• Wait time = $$

• Functions calling other functions increases
concurrency

PutObject

UpdateItem

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Solution: Waiting to wait

• Don’t wait (when possible)!

• Use fire and forget patterns to kick-off work, commit
data, etc.

• Perform work in parallel

• Orchestrate multi-step process with AWS Step
Functions

• Pay for orchestration, not wait time

PutObject

UpdateItem

Event

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Observing my application

• How do I manage logging and tracing in a
serverless application?

• Serverless applications composed of
numerous disparate, ephemeral services

• Rely heavily on managed services

• Observability focuses on logs, metrics, and
traces

Metrics Traces

Logs

Observability

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Solution: Observing my application

• Leverage AWS tools:

• AWS CloudWatch

• AWS X-Ray

• Tips:

• Set a retention period for CloudWatch Logs

• Use CloudWatch Embedded Metrics Format
(EMF)

• Add X-Ray permissions to execution role

• Lambda Extensions enables a broad array of partner
tooling

Amazon
CloudWatch Metrics

AWS X-Ray

Amazon
CloudWatch Logs

Observability

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What’s concurrency? Should we raise it?

• My team plans for X requests per second, what
should I set concurrency to?

• As demand increases, Lambda services increases
concurrent executions

• One function instance handles one request

• Concurrency is a measure of concurrent
executions

• Cumulative concurrency and burst are limited by
AWS account per Region

Event

Event

Event

Lam
b

d
a Execu

tio
n

En
viro

n
m

e
n

ts

… …

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Start 1 min 2 min 3 min 4 min

500

1000

1500

4000

3500

3000

2500

2000

R
e

q
u

e
st

s

4500

5000

Aside: Exploration of Lambda Concurrency & Burst Limits

Function

• Average duration: 1 second

• Requests / second: 4000

• Synchronous invocation

Account

• N. Virginia (us-east-1)
• Concurrency limit: 1000 (default)

• Burst limit: 3000 (default)

Successful invocation

Cold start

Throttled invocation

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Start 1 min 2 min 3 min 4 min

500

1000

1500

4000

3500

3000

2500

2000

R
e

q
u

e
st

s

4500

5000

Aside: Exploration of Lambda Concurrency & Burst Limits

Function

• Average duration: 1 second

• Requests / second: 4000

• Synchronous invocation

Account

• N. Virginia (us-east-1)

• Concurrency limit: 5000 (default)

• Burst limit: 3000 (default)

Successful invocation

Cold start

Throttled invocation

Increase to
5000 RPS

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Solution: What’s concurrency? Should we raise it?

• Understand Lambda scaling and concurrency

• Concurrency is a function of duration and request
rate

• Load test to estimate duration

• Leverage Provisioned Concurrency for anticipated
bursts of activity

• Reserved Concurrency can be used to throttle, if
needed

• Consider asynchronous processing to enable scaling

Event

Amazon SQS
Queue

Event
Event

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

After the session: Keep Learning!

Architecting Serverless Solutions

https://www.aws.training/Details/eLearning?id=42594

AWS Lambda Foundations

https://www.aws.training/Details/eLearning?id=27197

https://www.aws.training/Details/eLearning?id=42594
https://www.aws.training/Details/eLearning?id=27197

