aws Ni

Serverless on AWS

Immersion Day

Vamsi Vikash Ankam i

2021




Building your second @
Lambda function

Or the mistakes we’ve all made ... and how to fix them
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The “Lambda-lith” architecture

e Should I write a single function with internal
branching?

* Benefits: —> do “x”
* Fewer functions to manage

* Simpler migration path []‘:':’D e — > doY’

* Challenges: —> do 7"

e Large package size
* Hard to enforce least privilege
e Scaling team

* Maintenance
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Solution: The “Lambda-lith” architecture

* For net new, recommend single-purpose functions (or
microservices)

e Benefits: — —> do “x”

* Easier to debug, trace errors
* Enforce least privilege, one role per function []‘-’-’D /1 —> doy”
 Simpler to test

— @ —_— dO //Z//
 Code reuse

e Less surface area

* Tips:
* Use naming conventions and tags to enhance
discoverability

 Don’t go nano
aWws
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Integrating with my relational database

.. or other constrained downstream resources

* My experience / existing app is built with a relational
database, will this work with Lambda?

* Representative of two common issues:
* Drowning downstream resources
* Reusing expensive operations

 Lambda can scale up quickly, putting pressure on
downstream resources

* Expensive operations, such as creating a database
connection, take time

 Time is proportional to cost
* Impacts function cold start
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Solution: Pressure on downstream resources

e Consider resource type: (1) relational database or (2)
other -

* Relational database options: \

* For MySQL, PostgreSQL, consider Amazon RDS
Proxy for shared connection pool D%ﬂ —> ‘

QD —
* Aurora Serverless supports Data API /

e Other resource options: -

 Enable reserved concurrency

* Insert a queue between function and resource
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Solution: Managing expensive operations

e |nitialize clients and database connections
outside the function handler

 Consider caching static assets in /tmp
* Avoid for user or other sensitive data

* Subsequent invocations can reuse these
resources

Function
Init

import boto3

client = None

def handler(event):
global client

if not client:
client = boto3.client(“dynamodb™)

# business logic

Runtime
Shutdown

time
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To VPC or not VPC?

* Should my Lambda function be VPC-enabled?
e Other resources are in a VPC (e.g. EC2, RDS)

* Security wants to implement network security
tools

 Lambda functions always run in VPCs owned by the
Lambda service team

e When VPC enabled, configured with access to
your VPC via an ENI

e Lambda functions are invoked via an action with
access controlled by AWS IAM

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Customer VPC

— (|@m) <

AWS Lambda S

Elastic network
interface(s)

b /
@<

VPC to VPC
NAT

ervice VPC

dWsSs



Solution: To VPC or not VPC?

* Only if your function needs access to resources in the
VPC

* Includes access to on-prem via VPN or DX

e Tips for VPC functions:

* Requires access to multiple AZs, select at least two
subnets

* Never target public subnets

* Configure a NAT or NAT Gateway for internet access
 Use VPC Endpoints for access to AWS services
 ENIs can be exhausted, monitor usage
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AWS services requiring VPC
Amazon ECS
Amazon EFS
Amazon ElastiCache
Amazon Elasticsearch Service
Amazon MSK
Amazon MQ
Amazon RDS

Amazon Redshift
AWS PrivateLink
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Waiting to wait

e Should | perform synchronous work in my Lambda
function?
E Putobject\i i
* Lambda charged by duration, per millisecond : I :
L € : :
* Waittime = $S E E UpdateItem \E
* Functions calling other functions increases i< . .
concurrency : : |
aWws
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Solution: Waiting to wait

 Don’t wait (when possible)!

e Use fire and forget patterns to kick-off work, commit
data, etc.

* Perform work in parallel

* Orchestrate multi-step process with AWS Step
Functions

* Pay for orchestration, not wait time

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

PutObject
N

zA

A\ 4

UpdateItem

N
L

dWsSs



Observing my application

* How do | manage logging and tracing in a
serverless application?

* Serverless applications composed of
numerous disparate, ephemeral services

* Rely heavily on managed services

* Observability focuses on logs, metrics, and
traces
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Solution: Observing my application

e Leverage AWS tools:
e AWS CloudWatch
 AWS X-Ray

* Tips:
e Set aretention period for CloudWatch Logs

e Use CloudWatch Embedded Metrics Format
(EMF)

 Add X-Ray permissions to execution role

 Lambda Extensions enables a broad array of partner
tooling

dWsSs
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What’s concurrency? Should we raise it?

My team plans for X requests per second, what
should | set concurrency to?

 As demand increases, Lambda services increases
concurrent executions

* One function instance handles one request

e Concurrency is a measure of concurrent
executions

* Cumulative concurrency and burst are limited by
AWS account per Region
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Requests

Aside: Exploration of Lambda Concurrency & Burst Limits

5000
4500 Function
* Average duration: 1 second
4000
* Requests / second: 4000
300 e Synchronous invocation
3000
Account
2500 . e .
* N. Virginia (us-east-1)
2000 * Concurrency limit: 1000 (default)
e Burst limit: 3000 (default)
1500
1000
. Successful invocation
500

. Cold start

. Throttled invocation

Start 1 min 2 min 3 min 4 min

dWsSs
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Requests

Aside: Exploration of Lambda Concurrency & Burst Limits

5000 Increase to
5000 RPS .
4500 Function
* Average duration: 1 second
4000
e Requests / second: 4000
300 e Synchronous invocation
3000
Account
2500 R
* N. Virginia (us-east-1)
2000 e Concurrency limit: 5000 (default)
e Burst limit: 3000 (default)
1500
1000
. Successful invocation
500

. Cold start

. Throttled invocation

Start 1 min 2 min 3 min 4 min
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Solution: What’s concurrency? Should we raise it?

* Understand Lambda scaling and concurrency

 Concurrency is a function of duration and request
rate

e Load test to estimate duration

& —®

* Leverage Provisioned Concurrency for anticipated Amazon SQS
bursts of activity Queue

 Reserved Concurrency can be used to throttle, if
needed

* Consider asynchronous processing to enable scaling

dWsSs
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After the session: Keep Learning!

Architecting Serverless Solutions
https://www.aws.training/Details/eLearning?id=42594

AWS Lambda Foundations
https://www.aws.training/Details/eLearning?id=27197

Welcome to
Serverless @’ S
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